Twitter Facebook YouTube flickr
Latest Posts…

Awesome Feedback from Beta Tester Sariel

One of our beta testers is the well known Technic builder Sariel from Poland. He has literally written the book on Technic, having just released his second ...

PFx Brick for Trains Part 2: Configuration

As a continuation from Part 1, the video shown below discusses how the PFx Brick can be configured to exploit features specifically beneficial to LEGO® trains. ...

PFx Brick for Trains Part 1: Installation

The PFx Brick is capable of transforming LEGO® trains with the addition of smart lighting effects, advanced motor control, and most of all programmable sound ...

Awesome Feedback from Beta Tester Sariel


One of our beta testers is the well known Technic builder Sariel from Poland. He has literally written the book on Technic, having just released his second edition of The Unofficial LEGO® Technic Builder’s Guide. He has very meticulously tested the PFx Brick and provided us with a great deal of valuable feedback. Furthermore, he has generously taken the time to compile this showcase video shown above (and on his YouTube channel).

This video systematically covers aspects of the PFx Brick physical design, capabilities, the PFx software app, and lighting effects. He shows the brick operating by itself as well as inside two Stars Wars spaceships! The feedback we have received from Sariel and our other beta testers has been immensely useful. In fact, we have already incorporated some of their suggestions already.

This testing process is a necessary part of getting a product ready for market. It has to be real-world "road tested" to ensure reliability and to make sure we've captured the key features demanded by builders. Our confidence in the PFx Brick has been consistently rewarded with durable, consistent, and reliable operation--all thanks to continuous testing within a variety of LEGO models!



PFx Brick for Trains Part 2: Configuration

As a continuation from Part 1, the video shown below discusses how the PFx Brick can be configured to exploit features specifically beneficial to LEGO® trains.

The discussion is split in to four main topics:

  • Remote control setup
  • Motor configuration and operation
  • Lighting setup
  • Sound effects

The remote control setup discusses how a typical handheld remote can be configured into logical groups of functionality. It also shows how remote control actions can be assigned completely freely and how functionally dense a remote control can be configured. The motor configuration topic is the lengthiest since it covers almost every aspect of advanced motor control in the PFx Brick including speed control modes, speed steps, dual motor operation, speed curves, acceleration, and much more. Sophisticated and automated lighting behaviours such as directional headlights, flashing ditch lights, and adjustable brightness are discussed as well as loading and configuring sound effects.

The video includes a great deal of helpful illustrations to help explain more complex topics, especially those related to motor control. After completing two videos on this topic, it became clear to me that even more videos could be produced since some areas of functionality could benefit from deeper examination. This applies especially to the topic of sound effects.


PFx Brick for Trains Part 1: Installation

The PFx Brick is capable of transforming LEGO® trains with the addition of smart lighting effects, advanced motor control, and most of all programmable sound effects. Scale model trains have long enjoyed these benefits with the introduction of the NMRA (National Model Railroad Association) DCC (Digital Command Control) standard. Retrofitting DCC sound decoders into LEGO® trains is a difficult and challenging exercise requiring specialized tools and modification to LEGO® components. However, with the use of the PFx Brick, these missing features can now be made available to LEGO® trains and installation is no more difficult than fitting other Power Functions™ components. Some of the features that the PFx Brick offers LEGO® trains include:
  1. Syncronized control of two motors each with a dedicated motor driver channel.
  2. Adjustable speed curves to suit locomotive type.
  3. Adjustable limits on both minimum and maximum speed.
  4. Simulation of momemtum with programmable acceleration and deceleration rates.
  5. Smart directional headlights.
  6. Special light effects such as flashing ditch lights, MARS/Gyralite beacons, flickering fire boxes, dimming, and much more.
  7. On command sound effects for bells, whistles, horns, prime movers, chuffing, brake squeel, couplers, compressors, machinery, crossing gates, and much more.

The video shown below is the first of a two part series which discusses the installation aspects of fitting a PFx Brick to a typical LEGO® train. In this video, we modify the locomotive that is part of the City freight train set #7939. However, the techniques and methods shown are equally applicable to virtually any LEGO® train. The challenges a builder will face are the usual factors such as space and clearance for items such as wiring, motors, battery boxes, etc.

The diagram below shows how the PFx Brick has been installed into the locomotive including its accessories. This installation includes:
  1. Bi-directional head and tail lights consisting of a pair of 3 mm LEDs at each end.
  2. Two Power Functions™ train motor bogies each connected to a dedicated motor channel.
  3. M Speaker brick for sound effects.
  4. Rechargeable battery box with top-mounted access to power switch and recharge port.
  5. Side access doors to allow easy connection of a USB cable to the PFx Brick for programming and configuration.

Demo Model: SHIELD Helicarrier (76042)

The SHIELD Helicarrier (set 76042) is the largest model we've brought to life using the PFx Brick. The advantage of integrating the PFx Brick into a model like this is that there is plenty of space to house all the components. The challenge is in running all the LED wires throughout the model!

This model is set up to be controlled using the LEGO® Power Functions Speed Remote, and includes the use of startup actions. These actions are run immediately every time the PFx Brick is powered on. In this case, we're using them to start two effects that are dependent on the speed of the motor driving the rotors. In this way, these effects are always active, but don't produce any audio or visual results until the motor is actually moving.

The first effect is the Speed Modulated light effect, where the brightness is tied to the motor speed. This effect controls 4 of the light channels, each with 2 LEDs for each rotor. The second effect is the continuous playback of an engine noise sound, where the volume is modulated by the motor speed. As the motor speed is increased, the brightness of the lights and the volume of the engine noise will increase. Similarly, when the motor speed is decreased, they will also decrease. And when the motor is stopped, they will no longer be visible or audible.

A Power Functions XL Motor is controlled using the right wheel on Channel 1 to power the rotor drive system. The configuration for this motor has been customized to have a high minimum speed, so that it always has enough power to overcome the considerable amount of friction in the system.

Channel 1 is also used to control the lighting of the model. The right button of the remote toggles an Engine Glow effect on 2 of the light channels, each connected to 2 LEDs in each of the rear engines. Simultaneously pressing both buttons toggles the On effect for the remaining 2 light channels, connected to LEDs in the cockpit, landing bay and control centre. The left button is also used to toggle a solid On effect for the rotor lights, in case you want to turn them on even if the rotors aren't rotating.

Channel 2 controls playback for 6 different audio samples, which are triggered using the remote buttons or by rotating the wheels. Two separate effects can be triggered by each wheel by rotating them one notch clockwise or counter-clockwise.

Despite having a relatively simple control system, the configuration for this model uses some of the more advanced features of the PFx Brick to really make the Helicarrier come alive.



Demo Model: Ford Crown Victoria Police Interceptor

The PFx Brick has a wide portfolio of emergency vehicle flasher light effects. There are nearly 40 different different sequences each with different flash rates and styles. This enables builders to configure light outputs to match a wide variety of emergency vehicles used around the world and from different eras. A key feature of emergency vehicle flashers is the roof mounted lighting; implemented either as discrete lights or more commonly mounted into a light bar structure on the roof. In addition to the roof/lightbar flashers are auxilary flashing lights. These auxilary lights vary widely in terms of quantity and location among all emergency vehicles. Examples include side mounted flashers, radiator grille flashers, headlamp cluster flashers, etc. Auxilary flashers are often synchronized with one or more of the lightbar flashers and may or may not have the same flashing pattern. The PFx Brick provides a variety of functional flashing light outputs for all emergency flasher types in order to match a wide variety of prototypical emergency vehicles. The builder does not have to use every light output and may chose any combination which best suits their model.

The best way to see how these flashers work is to see them in action! This video shows the police interceptor in action:

The PFx Brick typically uses 7 of the 8 dedicated light channels for emergency vehicle flashers. The definition of each light channel is common for all of the emergency flasher styles and is shown in the diagram below. Also shown are a few examples of flasher lights with the light channels labeled.

The lightbar or roof mounted lights consist of a group of 4 lights which flash in variety of different styles. Often, these lights will be co-packaged into a roof mounted light bar. Two lights are intended for the left side of the vehicle and another pair is intended for the right side. Each left/right pair can have an inner and outer light. This allows light flashing sequences to alternate from left to right or from inside to outside depending on the style. For more simple applications, one of each of the left and right pairs can be used, e.g. just the outer left/right pair.

Two very common types of lightbar flashers are the so-called “Twinsonic” and “Whelen” style light- bars. These are named after the trade-marked products of Federal Signal and Whelen Engineering respectively; manufacturers of emergency vehicle lighting products. These style names are intended to be representative and not exact copies of any particular lighting product. The “Twinsonic” style light bar physically consisted of rotating mirrors around a light source and were common in older or heritage emergency vehicles. The rotating light effect is simulated with periodically variable brightness and has a “softer” flashing effect. The “Whelen” style lightbar is designed to simulate the flashing effects of modern and contemporary LED strobe-type emergency flashers. These light bars have many different strobe-like patterns and sequences. The PFx Brick includes most of the typical sequences available from this style of emergency flasher.

Many emergency vehicles incorporate additional flashing lights to those mounted on the roof. These can consist of flashers which duplicate the flashing sequence from the light bar or flash periodically synchronized with the alternating effect of the lightbar. The PFx Brick provides auxilary flasher outputs in order to connect lights which best represent the flashing light configuration of a particular vehicle.

The left/right auxilary 1x flashers flash periodically at the specificied rate alternating from left to right. The single auxilary 2x flash output flashes periodically at twice the specified flash rate. The 1x and 2x auxilary flashers are simple periodic flashers and do not exhibit the complicated flash sequences of the light bar. They are however synchronized with the light bar flash rate.

In order to showcase the awesome emergency vehicle lighting effects, I decided to build the quintessential North American police car: the Ford Crown Victoria police interceptor. I built the model using reference photographs and wanted to keep the scale of the vehicle within a typical 6-studs wide. The car was wired with operating head/taillights, reverse lights, headlight flashers and of course the roof light bar. Amazingly, the PFx Brick, speaker, and light wiring all fit within the car. A Power Functions extension wire discreetly feeds out of the bottom of the car to connect to an external battery box. A wiring diagram of the police car is shown below.

The PFx Brick was configured to activate the various lighting and sound effects using a dual joystick remote control. The remote actions were configured as follows:


Show more posts